Getting repeated results in SVM in R


Getting repeated results in SVM in R



I'm trying to predict using SVM from R package "e1071". But I'm getting repeated values as predicted outcomes. I have run this several times but getting same results. Please help me to find what wrong is going here.


library(e1071)
tuneResult <- tune(svm,y~.,data=calibration.data,ranges = list(epsilon = seq(0,1,0.1), cost = 2^(2:9)))
tunedModel <- tuneResult$best.model
predict.data<-predict(tunedModel,prediction.data)
predict.data


2006-03-01 2006-04-01 2006-05-01 2006-06-01 2006-07-01 2006-08-01 2006-09-01 2006-10-01 2006-11-01 2006-12-01 2007-01-01 2007-02-01 2007-03-01 2007-04-01 2007-05-01
0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676
2007-06-01 2007-07-01 2007-08-01 2007-09-01 2007-10-01 2007-11-01 2007-12-01 2008-01-01 2008-02-01 2008-03-01 2008-04-01 2008-05-01 2008-06-01 2008-07-01 2008-08-01
0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676
2008-09-01 2008-10-01 2008-11-01 2008-12-01 2009-01-01 2009-02-01 2009-03-01 2009-04-01 2009-05-01 2009-06-01 2009-07-01 2009-08-01 2009-09-01 2009-10-01 2009-11-01
0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676 0.05798676

.....and so on.



Calibration data is in the following format:


y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
1991-03-01 -8.5371 -0.4166 -0.1033 -0.2974 0.0130 -3.7858 -3.6329 -4.0668 -3.9070 -5.6851 -5.7326 -6.2762 -6.3069
1991-04-01 -8.4224 2.2427 2.6264 2.5721 2.9529 -0.4166 -0.1033 -0.2974 0.0130 -3.7858 -3.6329 -4.0668 -3.9070
1991-05-01 -8.1701 4.0619 4.4961 4.4715 4.9228 2.2427 2.6264 2.5721 2.9529 -0.4166 -0.1033 -0.2974 0.0130
1991-06-01 -8.5097 3.6112 3.6158 4.0910 4.0928 4.0619 4.4961 4.4715 4.9228 2.2427 2.6264 2.5721 2.9529
1991-07-01 -8.5450 0.8204 0.6754 1.1004 0.9026 3.6112 3.6158 4.0910 4.0928 4.0619 4.4961 4.4715 4.9228
1991-08-01 -4.3212 0.2197 0.1151 0.2999 0.1626 0.8204 0.6754 1.1004 0.9026 3.6112 3.6158 4.0910 4.0928
1991-09-01 1.0677 0.8090 0.8248 0.8393 0.8325 0.2197 0.1151 0.2999 0.1626 0.8204 0.6754 1.1004 0.9026
1991-10-01 2.4652 1.1682 1.0744 1.0487 0.9724 0.8090 0.8248 0.8393 0.8325 0.2197 0.1151 0.2999 0.1626
1991-11-01 -1.5196 -0.4426 -0.7859 -0.8218 -1.1477 1.1682 1.0744 1.0487 0.9724 0.8090 0.8248 0.8393 0.8325
1991-12-01 -6.7485 -3.8733 -4.2662 -4.3024 -4.6878 -0.4426 -0.7859 -0.8218 -1.1477 1.1682 1.0744 1.0487 0.9724
1992-01-01 -7.8150 -4.9241 -4.9465 -5.5029 -5.5178 -3.8733 -4.2662 -4.3024 -4.6878 -0.4426 -0.7859 -0.8218 -1.1477
1992-02-01 -5.7313 -4.4448 -4.4869 -4.7235 -4.7979 -4.9241 -4.9465 -5.5029 -5.5178 -3.8733 -4.2662 -4.3024 -4.6878
1992-03-01 -0.9963 -0.6056 -0.2872 -0.5941 -0.2780 -4.4448 -4.4869 -4.7235 -4.7979 -4.9241 -4.9465 -5.5029 -5.5178
....................
2005-11-01 -4.2856 -1.8385 -2.3010 -2.0255 -2.5012 0.8122 0.5494 0.8150 0.5389 0.2630 0.2697 0.3856 0.3990
2005-12-01 -6.3069 -4.8993 -5.1313 -5.4161 -5.6413 -1.8385 -2.3010 -2.0255 -2.5012 0.8122 0.5494 0.8150 0.5389



Prediction data is :


X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12
2006-03-01 25.47954 25.12117 25.32201 25.01688 21.95794 21.53203 21.73904 21.41161 19.60088 19.29948 19.04211 18.89265
2006-04-01 30.07153 30.01922 30.53638 30.34532 25.47954 25.12117 25.32201 25.01688 21.95794 21.53203 21.73904 21.41161
2006-05-01 32.17442 32.34361 33.43570 33.57129 30.07153 30.01922 30.53638 30.34532 25.47954 25.12117 25.32201 25.01688
2006-06-01 28.61485 28.59253 29.06019 29.09922 32.17442 32.34361 33.43570 33.57129 30.07153 30.01922 30.53638 30.34532
2006-07-01 28.13924 27.78606 28.53410 28.16312 28.61485 28.59253 29.06019 29.09922 32.17442 32.34361 33.43570 33.57129



Please help me to find out a solution.









By clicking "Post Your Answer", you acknowledge that you have read our updated terms of service, privacy policy and cookie policy, and that your continued use of the website is subject to these policies.

Popular posts from this blog

Rothschild family

Cinema of Italy